

4 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

including uploading local files, taking pictures,
recording audio/video, manipulating the
clipboard, sending SMS, dialing numbers,
implanting bootkit, or installing the attacker’s
apps uploaded to Google Play, etc. The right
panel lists all information stolen from the
victim’s device. In this screenshot, the victim’s

installed app list, clipboard, a photo taken from
the back camera, an audio clip, and a video clip
have been uploaded, with the GPS location
intercepted from the ad library. The panel also
pins down the GPS location of the victim’s
device onto a Google Map widget.

Figure 1:
Illustration of
the Sidewinder
Targeted Attack
Scenario

Table 1: Outline
of the Sidewinder
Targeted
Attack through
Vulnerable Ad
Libraries

Attacker’s
Server

Actual
Ad Server

Device A

Device B

Device
Victim

Attack Overvie w
Info uploaded from ad libs

Serving Normal ad

Injecting attack payload

Comman & Contro l

31.08%

68.92%

51.04% 48.96%

API Level ≤ API 16 > API 16

Attack Vector JBOH and DLOH JS Sidedoor

Attacks

(w/ Android Context)

Clipboard manipulation
Launcher settings

modification Proxy
modification

Taking pictures Audio &
video recording Stealthy

app installation

(w/o Android Context)

Local files uploading Root
exploit & Code injection

Implanting bootkit Sending
SMS Making phone calls

Abusing privileged
interfaces

5 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

Warhead: Attacking Vulnerabilities
of Android

Piercing The Armor
In this section, we explain in more detail the risks
of remote attacks on the Android devices.

Attacking JavaScript Binding over
HTTP (JBOH)
Android uses the JavaScript binding method
addJavascriptInterface to enable JavaScript
code running inside a WebView to access the
app’s Java methods (also known as the Javascript
bridge). However, it is widely known that this
feature, if not used carefully, presents a potential
security risk when running on Android API 16

(Android 4.1) or below. As noted by Google: “Use
of this method in a WebView containing
untrusted content could allow an attacker to
manipulate the host application in unintended
ways, executing Java code with the permissions
of the host application.”3

In particular, if an app running on Android API 16
or below uses the JavaScript binding method
addJavascriptInterface and loads the content
in the WebView over HTTP, an attacker over the
network could hijack the HTTP traffic (e.g.,
through WiFi or DNS hijacking) to inject
malicious content into the WebView and to
control the host application. Listing 1 is a sample
Javascript snippet to execute shell command.

Figure 2: The
control panel of
the attacker, and
the files uploaded
from the victim

Based on this precise position information, it is easy to identify individuals or groups of “VIP” targets by
which offices they are in.

3 http://developer.android.com/reference/android/webkit/WebView.html# addJavascriptInterface(java.lang.Object,%20java.lang.String).

6 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

Figure 3: Target
SDK statistics of
popular Google
Play apps

We call this the JavaScript-Binding-Over-HTTP
(JBOH) vulnerability4. This applies to insecure
HTTPS channels as well. If an app containing such
vulnerability has sensitive Android permissions
such as access to the camera, a remote attacker
could exploit it to perform sensitive tasks such as
taking photos or recording video, over the
Internet, without consent. Based on the official
data in June 20145, ~60% of Android devices are
still running API≤16.

Note that API>16 platforms are not necessarily
secure. If the app is targeting at a lower API
level, Android will still run it with the lower API
level for compatibility reasons. Figure 3 shows
the targeted API of popular Google Play apps,
each of which has over 50,000 downloads. We
can see that a large portion of apps are
targeting at API≤16.

Attacking Annotated JavaScript
Binding Interfaces
Starting with Android 4.2 (API>16), Google
introduced the @JavascriptInterface
anno- tation6 to explicitly designate and restrict
which public Java methods in the app were
accessible from JavaScript running inside
a WebView. However, if an ad library uses the
@JavascriptInterface annotation to expose
security-sensitive interfaces, and uses HTTP to
load content in the WebView, it is vulnerable to
attacks where an attacker over the network
could inject malicious content into the WebView
to misuse the interfaces exposed through the JS
binding annotation. We call these exposed JS
binding annotation interfaces “JS Sidedoors.”

For example, we found a list of sensitive
Javascript interfaces that are publicly ex- posed
from certain versions of a real-world ad library:

(a) Statistics by app number (b) Statistics by app download count

Listing 1: Sample
Javascript snippet
to execute shell
command

jsObj.getClass().forName(”java.lang.Runtime”)
 .getMethod(”getRuntime”,null).invoke(null,null).exec(cmd)

4 http://www.fireeye.com/blog/technical/2014/01/js-binding-over-http- vulnerability-and-javascript-sidedoor.html.
5 https://developer.android.com/about/dashboards/index.html.
6 http://developer.android.com/reference/android/webkit/ JavascriptInterface.html.

31.08%

68.92%
51.04% 48.96%

API <=16

API >=16

API <=16

API >16

7 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

createCalendarEvent, makeCall,

postToSocial, sendMail, sendSMS,

takeCameraPicture, getGalleryImage,

registerMicListener, etc4. Given that this ad
library loads ads using HTTP, if the host app has
the corresponding permissions (e.g., CALL
PHONE), attackers over the network can abuse
these interfaces to do malicious things (e.g.,
utilizing the makeCall interface to dial phone
numbers without the user’s consent).

Security Issues with DEX Loading over
HTTP (DLOH)
Similar to JBOH, DEX loading over HTTP or
insecure HTTPS (DLOH) is another serious issue
raised by ad libraries. If the attackers can hijack
the communication channels and inject malicious
DEX files, they can then control the behaviors of
the victim apps.

Detonation without Android Context
After getting local access, the attacker can upload
private and sensitive files from the victim’s device,
or modify files that the host app can write to (e.g.,
the directory of the host app and SD Card with
FAT file system).

To launch more sophisticated attacks like sending
SMS or taking pictures, the attackers may use
Java reflection to call other APIs from the
Javascript bridge. It appears this method makes
sending SMS easy. However, some other
operations require Android context 7 or
registering Java callbacks. Android context
provides an interface to the global information
about an app’s environment. Many Android

functionalities, especially remote call invocations,
are encapsulated in the context. We discuss
attacks requiring context in a later section. In this
section, we explain attacks that don’t need
Android context, and discuss their security risks.

Root Exploits and Code Injection
One direct threat posed by JBOH is to use the
JBOH shell (Listing 1) to download exe- cutables
and use them to root the device. Commercial
one-touch root apps claim they can root more
than 1,000 brands (>20,000 models) 8.
towelroot9, which exploits a bug found
recently in Linux kernel, claims that it can root
most new devices released before June 2014.
Thus, as long as attackers can get the JBOH shell,
they have the tools to obtain root on most
Android phone models.

Even if the attackers can’t obtain root, they can
attempt ptrace10 to control the host app.
Although only processes with root privilege can
ptrace others, child processes are able to
ptrace their parents. Because the shell
launched from the Javascript bridge is a child
process of the host app, it can ptrace the host
app’s process. Note that only apps with
android:debuggable set as “true” in the manifest
can be ptraced, which limits its adoption.

Sending SMS and Dialing Numbers without
User Consent
Sending SMS does not require context or user
interaction. A simple call does the job, as
shown in Listing 2

Listing 2: Sending
SMS without user
consent

SmsManager.getDefault().sendTextMessage(phoneNumber,null,message,null,null);

7 http://developer.android.com/reference/android/content/Context.html.
8 http://shuaji.360.cn/root/.
9 http://towelroot.com/.
10 http://linux.die.net/man/2/ptrace.

8 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

To make calls from the Javascript bridge
without user consent, we can invoke the
telephony service to dial numbers directly via
binder, as shown in Listing 3, where phone is
the remote Android telephony service and the
number 2 represents the second remote call.
s16 is the type marker represents “16 bit
string,” and packageName is the host app’s
package name, where we can obtain from the
information posted from the ad libraries. The
sequence number of the remote calls can be
found in the corresponding Android Interface

Definition Language (AIDL) files11. Many other
Android services can be invoked in the same
way, including sending SMS

Detonation with Android Context
As mentioned, it is more convenient to
directly obtain the Android context via the

Javascript bridge. Code in Listing 4, for
example, is an easy way to get context from
anywhere of the application.

Operations like taking pictures and recording
videos need to register Java callbacks. The
attackers either need to boot a Java VM from
the Javascript bridge, or to inject code into
the host app’s Java VM.

Fortunately, Android Runtime offers another
way to load Java Native Interface (JNI) code
into the host app using Runtime.load(). As
shown in Listing 5, an attacker can load
executables compiled from JNI code. Once
loaded, the code can obtain context as described
in Listing 4, or call DexClassLoaderload12 to
inject new classes from the attackers’ DEX
files to register callbacks to take pictures/
record videos.

Listing 3: Dial
numbers without
user consent

Listing 4: Sample
code to obtain
context

Runtime.getRuntime()
 .exec(”service call phone 2 s 16 ”+ packageName +” s16” + phoneNumber);

// We omit all try−catch statements and other unimportant code in this paper

public ContextgetContext(){
 finalClass<?>activityThreadClass=Class
 .forName(”android.app ActivityThread”);
 finalMethodmethod=activityThreadClass
 .getMethod(”currentApplication”);
 return(Application)method.invoke(null,(Object[])null);
}

11 http://developer.android.com/guide/components/aidl.html.
12 http://developer.android.com/reference/dalvik/system/DexClassLoader. html.

9 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

There are other ways to obtain Android context,
like reflecting to the private static context
variable of WebView13. However, without Java
VM instances, it’s difficult to take pictures and
record videos. After our submission to Black Hat
in April 2014, we noticed that MWR was also
concurrently and independently working on this
issue. They published a similar mechanism in
June 201414.

Clipboard Monitoring nd Tampering
With the Android context, an attacker can
monitor or tamper with the clipboard. Android
users may perform copy-paste on important text
content. For example, there are many popular
password-management apps in Google Play,
enabling the users to click-and-copy passwords

and paste them into login forms. Malicious
apps can steal the passwords if they can read
the contents on clipboard. Android has no
permissions restricting apps from accessing
the global clipboard. Any UID has the capability
to manipulate clipboard via the API calls in Listing 6:

Using these APIs, the attackers can monitor
changes to a clipboard and transfer the
clipboard contents to some remote server.
They can also alter the clipboard content to
achieve phishing goals. For example, the user
may copy a link to visit and the background
malicious service can change that link to a
phishing site. We have notified Google about
this issue.

Launcher Settings Modification
Android Open Source Project (AOSP) classifies
Android permissions into several protec- tion
levels: “normal,””dangerous,” “system,”
“signature” and “development”15,16,17. Dangerous
permissions“may be displayed to the user and
require confirmation before pro- ceeding, or

some other approach may be taken to avoid
the user automatically allowing the use of such
facilities.”In contrast, normal permissions are
automatically granted at installation, “without
asking for the user’s explicit approval (though
the user always has the option to review these

Listing 5: Sample
Javascript snippet
to load JNI binary
into the host app’s
Java VM

Listing 6: API
calls to peek into/
tamper with the
clipboard

jsObj.getClass().forName(”java.lang.Runtime”)
 .getMethod (”getRuntime”,null).invoke(null,null).load(binaryPath);

ClipboardManager.getText()
ClipboardManager.hasPrimaryClip()
ClipboardManager.setText()
Clipboard Manager.setPrimaryClip()
ClipboardManager.hasText()
ClipboardManager.addPrimaryClipChangedListener()
ClipboardManager.getPrimaryClip()

13 http://www.weibo.com/p/1001603724694418249344?utm_source=weibolife.
14 https://labs.mwrinfosecurity.com/blog/2014/06/12/putting-javascript- bridges-into-android-context.
15 http://developer.android.com/guide/topics/manifest/permission-element.html.
16 https://android.googlesource.com/platform/frameworks/base/+/master/ core/res/AndroidManifest.xml.
17 https://android.googlesource.com/platform/packages/apps/Launcher2/+/ master/AndroidManifest.xml.

10 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

permissions before installing)”15. If an app requests
both dangerous permissions and normal
permissions, Android only displays the dangerous
per- missions by default. If an app requests only
normal permissions, Android doesn’t display any
permission to the user.

We have found that certain “normal” permissions
have dangerous security impacts18. For example,
the attackers can manipulate Android home
screen icons using two normal permissions:
launcher READ SETTINGS and WRITE
SETTINGS permissions. These two permissions
enable an app to query, insert, delete, or modify
all launcher configuration settings, including icon
insertion or modification.

As a proof-of-concept attack scenario, a malicious
app with these two permissions can query/insert/
alter the system icon settings and modify
legitimate icons of some security- sensitive apps,
such as banking apps, to a phishing website.

After our notification, Google has patched this
vulnerability in Android 4.4.3 and has released the
patch to its OEM partners. However, according to
Google5, by 7 July 2014, 17.9% Android devices
are using Android 4.4. Given that Android 4.4.2
and below has this vulnerability, over 82.1%
Android devices are vulnerable.

Proxy Modification
With the CHANGE WIFI STATE permission,
Android processes can change the proxy
settings of WIFI networks (not solely the currently
connected one). To do this, the attacker can use
the remote calls exposed by WifiManager to
obtain the WifiConfiguration objects, then
create new proxySettings to replace to a

corresponding field. Note that the
proxySettings field is a private Java field not
intended to be accessed by other processes.
Unfortunately, the flexible and powerful Java
reflection mechanism (especially the forName(),
getField(), setAccessible() calls) exposes
such components to the attackers for arbitrary
read or write operations.

Taking Pictures and Recording Audio/Video
without User Interaction
Android audio recording via the MediaRecorder
APIs does not need user interaction or
consent, which makes it easy to record sound
in the background.

On the contrary, taking pictures and recording
videos are more challenging. First, this requires
registering Java callbacks. Second, Android warns
that “Preview must be started before you can take
a picture”19. It seems that taking pictures and
recording videos without user notification is
impossible. However, security largely depends on
the correct implementation and enforcing a
flawless implementation is difficult. On some of
the popular phones (models anonymized for
security consideration), startPreview() is
required to take pictures/record videos;
However, it’s highly possible that on these
devices takePicture() fails to check whether a
view has been presented to the user.
Fortunately, we have never witnessed a case
where the MediaRecorder can shoot videos
without calling setPreviewDisplay. But we
were able to create and register a dummy
SurfaceView to the WindowManager, which made
taking photos and videos possible even on
devices that properly checked for an
existing preview.

18 http://www.fireeye.com/blog/technical/2014/04/occupy_your_icons_ silently_on_android.html.
19 http://developer.android.com/reference/android/hardware/Camera.html.

11 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

Stealthy App Installation by Abusing
Credentials
With both the GET ACCOUNTS and the USE
CREDENTIALS permissions, Android pro- cesses
can get secret tokens of services (e.g., Google
services) from the AccountManager and use them
to authenticate to these services20. We verified
that Android apps with these two permissions can
authenticate themselves with the user’s Google
account, allowing access to Google Play and the
ability send app installation requests. Through the
Javascript bridge, attackers can install apps of
choice (e.g., an attacker’s phishing app) to any
devices registered in user’s account in the
background without user consent. Combined
with the launcher modification attack introduced
earlier, the attackers can redirect other app icons
(e.g., bank or email app icons) to the phishing app
and steal the user’s login credentials.

Targeting Victims Based on Ad Traffic
In this section, we explain the risks of victims’
devices being tracked and targeted through
ad traffic.

Communication Channels Prone to Hijack
It is well known that communication via HTTP is
prone to hijacking and data tamper- ing. Though
ad libraries may not have the incentive to abuse
users’ private and sensitive data, this is not the

case with the attackers eavesdropping or hijacking
the HTTP traffic. Switching to HTTPS may not
solve this issue since the HTTPS security relies on
a flawless implementation, which is difficult. For
example, there are cases where the developer
failed (intentionally or unintentionally) to check
the server’s certificate21. We found that some of
the most popular ad libraries (see Table 3) have
this issue. We successfully launched Man-in-the-
Middle (MITM) attacks and intercepted the data
uploaded to the remote server. Note that even if
the ad libraries have a correct and rigorous
implementation, the SSL library itself may contain
serious vulnerabilities that can be exploited by
MITM attacks22,23.

Information Leakage from Ad Libraries
Almost every ad library uploads local information
from Android devices. Based on our observations,
they do so mostly for purposes such as checking
for platform compatibility and user interest
targeting. The information most frequently
uploaded includes IMEI, Android version,
manufacturer, Android ID, device specification,
carrier information, host app information,
installed app list, etc. Table 3 lists the info
uploaded from the top five popular ad libraries.

Listing 7 is a captured packet posted to the
remote ad server by one of the ad libraries. It is

Listing 7: API
calls to peek into/
tamper with the
clipboard

requestactivity=AdRequest&d-device-screen-density=1.5&d-device-screen-
size=320X533&u-appBId=com.example.app&u-appDNM=Example&u-appVer=1.2&h-user-
agent=Mozilla
%2F5.0+%28Linux%3B+U%3B+Android+4.1.2%3B+en-us%3B+sdk+Build%2FMASTER%
29+AppleWebKit%2F534.30+%28KHTML%2C+like+Gecko%29+Version%2F4.0+Mobile+Safari
%2F534.30&d-localization=en_us&d-netType=umts&d-orientation=1&u-latlong-accu=
37.410835%2C-121.920514%2C

20 http://seclists.org/bugtraq/2014/Mar/52.
21 Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumga¨rtner, Bernd Freisleben, and Matthew Smith. Why eve and mallory love android: An analysis

of android ssl (in) security. In Proceedings of the 2012 ACM conference on Computer and communications security, pages 50–61. ACM, 2012.
22 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0224.
23 http://www.fireeye.com/blog/technical/2014/04/if-an-android-has-a- heart-does-it-bleed.html.

12 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

captured from a popular Google Play app. From
this packet we can tell the device’s screen density
(d-device-screen-density), screen size (d-device-
screen-size), host app’s pack- age name (u-appBId),
host app’s name (u-appDNM)1, host app’s version
(u-appVer), user agent (h-user-agent), localization
(d-localization), mobile network type (d-netType),
screen orientation (d-orientation), and GPS
location (u-latlong-accu). The most important
infor- mation is the GPS location, where the
victim’s latitude, longitude and the location
precision are shown. It is reasonable for an ad to
obtain this information to improve the ad-serving
experience. However, with this information, an
attacker can precisely locate the victim and
acquire the device’s specifications.

Large-scale Monitoring and Precise Hijacking
To locate victims effectively, an attacker needs to
monitor large-scale network traffic containing
such private information. Unfortunately, several
well-known attacks can be used to achieve
large-scale monitoring, including DNS hijacking,
BGP hijacking, and ARP hijacking in IDC.

In this context, DNS hijacking is done to subvert
the resolution of Domain Name System (DNS)
queries through modifying the behavior of DNS
servers so that they serve fake DNS information.

DNS hijacking is legally and maliciously used in
many situations including traffic management,
phishing and censorship. Attackers successfully
compromised many DNS servers, including the
ones from Google and Godaddy24. By DNS
hijacking, attackers can effectively access all the
traffic to ad servers.

BGP hijacking takes over groups of IP addresses,
corrupting Internet routing tables by breaking
BGP sessions or injecting fake BGP information.
This enables attackers to monitor all traffic to
specific IPs. Historically, there were many BGP
hijacking attacks that affected YouTube, DNS root
servers, Yahoo, and many other important
Internet services25.

ARP hijacking (or spoofing) in IDC26 is done to
hijack the traffic to the ad server in the IDC where
the ad server locates through fake ARP packets.
Attackers may rent servers close to the target
servers, and use fake ARP packets to direct all the
traffic to go through the hijacking servers first for
monitoring and hijacking..ARP hijacking is a
well-known approach used in network attacks.

Using the large-scale traffic intercepted from the
above methods, attackers can iden- tify potential
victims based on information leakage such as GPS

Figure 4: Number
of ad libraries
included in Google
Play apps (with
more than 50,000
downloads

App Num

0

20429

4

2343

8

1310

2

9196

6

2543

10

498

1

25017

5

1291

9

607

3

4452

7

1609

>10

980

0

24 https://isc.sans.edu/diary/Domaincontrol+(GoDaddy)+Nameservers+DNS+ Poisoning+/5146.
25 http://www.networkworld.com/article/2272520/lan-wan/six-worst-internet- routing-attacks.html.
26 http://en.wikipedia.org/wiki/ARP_spoofing.

13 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

location described in Sec- tion 4.2. After that,
they can inject exploits only into the targeted
traffic to launch further attacks. Attackers keep a
low profile by allowing all other irrelevant
network traffic to pass without being modified.

Targetable and Exploitable Google
Play Apps
We used the FireEye Mobile Threat Prevention
(MTP) engine to analyze all of the ~73,000
popular apps from Google Play with more than
50,000 downloads, and identified 93 ad libraries.
The detailed ad library inclusion statistics are
shown in Figure 4. Seventy-one% of the apps
contain at least one ad library, 35% have at least
two ad libraries, and 22.25% include at least
three ad libraries. The largest ad inclusion
number is 35. Since Google is cautious about the
security of the products it directly controls, we
exclude Google Ad from the following discussion.
For security considerations, in this paper we
anonymize the names of the other 92 ad libraries,

using Ad1, Ad2, ..., Ad92 to refer to them, where
the subscripts represent the rankings of how
many apps include the ad libraries. The top five
popular ad libraries’ inclusion and download
statistics are listed in Table 2.

We analyzed the 92 ad libraries found in the
popular Google Play apps, and summa- rized the
communication channel vulnerabilities in Table
3. Combined with the uploaded information
column we can learn about the data the
attackers can obtain.

Fifty-seven of the 92 ad libraries in the popular
Google Play apps have the JBOH issue.
Specifically, four of the top five ad libraries are
subject to this problem (shown in Table 2). Seven
of the 92 ad libraries are prone to DLOH attacks.
Particularly, some versions of Ad5 in Table 3 have
this problem. The affected Google Play apps
number and the accumulated download counts
are listed in Table 4.

Table 2: The
inclusion statistics
of the top five
Android ad
libraries excluding
Google Ad. Their
JBOH statistics
are also listed
(discussed in
the earlier JBOH
section.).

Ad Library Number of Apps JBOH Apps Total Downloads JBOH Downloads

Ad1 9,702 2,802 8,781M 2,348M

Ad2 8,856 4,204 7,865M 4,754M

Ad3 8,818 2,117 8,499M 1,611M

Ad4 5,519 1,112 4,687M 617M

Ad5 5,170 0 4,519M 0

14 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

Table 3: The
uploaded data,
communication
channel
vulnerabilities, and
JBOH/DLOH details
of the top five ad
libraries.

Table 4: Assessment statistics
of Google Play apps (downloads
≥50,000) that are vulnerable to the
Sidewinder Targeted Attack. Type I
apps are those subject to JBOH or
DLOH attacks; Type II apps are those
not only JBOH/DLOH exploitable but
also have the LOCATION leakage
(thus vulnerable to the Sidewinder
Targeted Attack). Note that an app
is counted in the total statistics if
it is subject to any of the attacks,
including uploading files and root
exploits.

Ad Library Uploaded Info Protocol SSL Vuln JBOH DLOH

Ad1
IMEI/device id, device model, An-

droid version, location
HTTP/
HTTPS

Ad2
device specification, Android version,

host app info, location
HTTP

Ad3

IMEI/device id, device model, An-
droid version, device manufacturer, carrier info,

location, ip
HTTP

Ad4
IMEI/device id, device model, device

specification, Android version
HTTP

Ad5

IMEI/device id, device model, device
specification, Android version, coun- try,

launguage
HTTPS

Subject to attack type Type I #
Type I

Downloads
Type II #

Type II
Downloads

Code injection via ptrace 2,055 444M 272 67M

Send SMS 349 340M 229 254M

Make phone calls 572 399M 426 324M

Launcher modification 111 95M 81 37M

Proxy modification 644 792M 419 378M

Record audio 1,097 1,408M 654 621M

Take pictures/record videos 1,141 1,380M 622 665M

Install apps stealthily 351 552M 197 332M

Total(incl. root exploits) 16,579 11,706M 4,201 3,207M

15 www.fireeye.com

FireEye: Sidewinder Targeted Attack against Android

Conclusion
In the current golden age of Android ad
libraries, Sidewinder Targeted Attacks can
target victims using info leakage and other
vulnerabilities of ad libraries to get valuable,
sensitive information. Millions of users are still
under the threat of Sidewinder Targeted
Attacks. First we need to improve the security
and privacy protection of ad libraries. For
example, we encourage ad libraries’ publishers
to use HTTPS with proper SSL certificate

validation, and to properly encrypt network
traffic. They also need to be cautious about
which privileged interfaces are exposed to the
ad providers, in case of malicious ads or
attackers hijacking the communication channels.

Meanwhile, Google itself needs to further
harden the security framework. This may prove
difficult because:

1. Android is a complex system. Any sub-
component’s vulnerability may impact the
security of the whole system.
Fragmentation makes the situation even
more challenging.

2. The trade-off between usability,
performance and security always matters,
and market demand frequently dictates
that security comes last. Many Android
developers do not even understand how
to program securely (as shown in the
JBOH issue).

3. Many security patches are not back-ported
to old versions of Android (like the launcher
settings problem described earlier), even
though older versions are widely used.

4. There is always information asymmetry in
the development chain. For example, it
usually takes several months for vendors to
apply security patches after Google
releases them.

Albeit challenging, we hope that this work
can kickstart a conversation, both on
improved security and privacy protection in
third-party libraries and on a hardened
Android security framework.

Sidewinder Targeted Attacks can target
victims using info leakage and other
vulnerabilities of ad libraries to get valuable,
sensitive information. Millions of users are
still under the threat of Sidewinder
Targeted Attacks.

FireEye: Sidewinder Targeted Attack against Android

FireEye, Inc. | 1440 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) | info@fireeye.com | www.fireeye.com

© 2014 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye,
Inc. All other brands, products, or service names are or may be trademarks or service
marks of their respective owners. WP.SW.EN-US.072014

About FireEye, Inc.
FireEye has invented a purpose-built, virtual
machine-based security platform that provides
real-time threat protection to enterprises and
governments worldwide against the next
generation of cyber attacks. These highly
sophisticated cyber attacks easily circumvent
traditional signature-based defenses, such as
next-generation firewalls, IPS, anti-virus, and
gateways. The FireEye Threat Prevention Platform

provides real-time, dynamic threat protection
without the use of signatures to protect an
organization across the primary threat vectors and
across the different stages of an attack life cycle.
The core of the FireEye platform is a virtual
execution engine, complemented by dynamic threat
intelligence, to identify and block cyber attacks in
real time. FireEye has over 1,900 customers across
more than 60 countries, including over 130 of the
Fortune 500.

